SAS Clinical Online Training

Table of Contents

BASE SAS

  • Introduction To Sas System & Architecture
  • History And Various Modules
  • Features
  • Variables & Sas Syntax Rules
  • Sas Data Sets
  • Data Set Options
  • Operators
  • If – Then Else Statement
  • Where Statement
  • Creating & Redefining Variables
  • Reading Raw Data
  • Infile Statement With Options
  • Multiple Observations and Multiple Datasets.
  • Input Styles
  • SAS Functions
  • Select Statement
  • Do Loops
  • Leave and Continue Statements
  • Output Statement & Put Statement
  • Stop And Error Statements
  • Array Statement
  • Modifying And Combining Data Sets
  • Updating Master Data Set
  • Key Board Macros & Add Abbreviations
  • Display Manager Commands

BASE SAS PROCEDURES

  • Proc Sort
  • Proc Print
  • Proc Means
  • Proc Freq
  • Proc Plot
  • Proc Chart
  • Proc Compare
  • Proc Copy
  • Proc Summary
  • Proc Append
  • Proc Datasets
  • Proc Contents
  • Proc Delete
  • Proc Format
  • Proc Printto

SAS/REPORTS

  • Frequency Report
  • One-Way Frequency Report
  • Cross Tabular Frequency Report
  • Summary Statistics
  • Creating A List Report
  • Define Statement
  • Order Usage and Group
  • Printing Grand Totals
  • Rbreak Statement
  • Tabulate Procedure
  • One-Dimensional Tables
  • Two-Dimensional Tables
  • Obtaining A Total
  • Analysis Variables with options
  • Summary Statistics

SAS/ODS

  • Creating Rtf File
  • Creating Html File
  • Creating Pdf File
  • Creating Xml File

ORACLE-SQL CONCEPTS

  • Introduction
  • History
  • Features
  • Sql Command Set
  • Operators In Sql
  • Order By Clause
  • Group By Clause
  • Having Clause
  • Distinct Clause
  • Create and Insert
  • Deleting,Populating And Updating
  • Sub Queries

SAS/SQL

  • Introduction To SAS/SQL
  • Features & Uses
  • Terminology
  • Data Types, Key Words, & Operators
  • Functions, Predicates & Functions
  • Formatting Output
  • Group By Clause, Order By Clause & Having Clause
  • Case Expression and Conditional Logic.
  • Creating ,Populating & Deleting Tables
  • Sub Queries
  • Alter Table Statement
  • Renaming A Table & Columns
  • Changing Column’s Length
  • Joins & Views

SAS/ACCESS

  • Import & Export Procedures
  • Importing data from Ms-Access & Ms-Excel
  • Importing data from Oracle database
  • DbLoad Procedure

SAS/GRAPH

  • Gchart Procedure
  • Vertical, Horizontal, Pie
  • Donut
  • Group,Subgroups
  • Gplot Procedure
  • Mutliple Plots & Overlay
  • Symbol Statement
  • Title and Footnote Statements
  • Goptions

SAS/MACROS

  • Macro Concepts
  • Macros And Macro Variables
  • Creating Macro Variables
  • Using Macro Variables
  • Creating Modular Code With Macros
  • Invoking A Macro
  • Adding Parameters To Macros
  • Macros With Conditional Logic
  • Using Various Procedures In Macros
  • Automatic Variables
  • Macro Functions
  • Including External Macros

SAS/STAT

  • Proc Univariate
  • Proc Corr
  • Proc Reg
  • Proc Anova
  • Proc Rank
  • Proc Transpose

CLINICAL TRIALS

  • The Statistical Programmer’s Working Environment
  • Pharmaceutical Industry Vocabulary
  • Statistical Programmer Work Description
  • The Drug/Device Development Process
  • Classifying Clinical Trial Data
  • Introduction to Clinical Trials & Definition
  • Phases of Clinical trials
  • Ø Phase I
  • Ø Phase II
  • Ø Phase III
  • Ø Phase IV
  • What’s involved in a clinical trial?
  • What is CRF? (Case Report Form).
  • What is ACRF (Annotated CRF), why we need to Annotate?
  • What is mean by Protocol?
  • Protocol synopsis
  • Primary objective(s)
  • Secondary objective(s)
  • Study design
  • Randomization
  • Types of Blinding (Single Blind, Double Blind, Triple Blind)
  • Placebo Effects
  • Inclusion criteria
  • Exclusion criteria
  • Premature patient withdrawal
  • Investigational and control drugs
  • Treatment arms
  • Study drug discontinuation
  • Clinical Data Interchange Standard Consortium (CDISC)
  • Standard Data Tabulation Model (SDTM)
  • SDTM Implementation Guide and Its Versions
  • SDTM Fundamentals
  • Working on Clinical Trial data like Demographics, Medical History, Adverse Events etc